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Ramanujan complexes are high-dimensional simplicial complexes generalizing

Ramanujan graphs. A result of Oh on quantitative property (T) for Lie groups over local

fields is used to deduce a Mixing Lemma for such complexes. As an application, we

prove that nonpartite Ramanujan complexes have “high girth” and high-chromatic num-

ber, generalizing a well-known result about Ramanujan graphs.

1 Introduction

In 1959, Erdős [4] used random methods to show that there are graphs with arbitrary

large girth and arbitrary large chromatic number. In a way this is a surprising fact, since

large girth means that such a graph looks locally like a tree, and so locally its chromatic

number is two, while globally it requires a large number of colors. A constructive proof

was given by Lovász [10] in 1968, and explicit examples (with quantitative estimates) in

1988 by Lubotzky et al. [14] using Ramanujan graphs. This is still by no mean an easy

result even by nowadays standards.

The goal of this paper is to extend the above from Ramanujan graphs to high-

dimensional Ramanujan complexes, as defined and constructed in [15, 16] (see also
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11521

[9, 19]). One is facing the immediate question what we mean by “girth” and “chromatic

number” for simplicial complexes?

The girth g(X) of a graph X is equal to twice its injectivity radius r(X) (more

precisely r(X)= � g(X)−1
2 �). The injectivity radius of X is the maximal r ∈N such that if

π : X̃→ X is the universal cover map, then for every y∈ X̃, π is one-to-one on the ball

of radius r around y. This definition is easily extended to finite simplicial complexes

and, in particular, to the Ramanujan complexes, whose universal covers are the Bruhat–

Tits buildings of type Ã. The injectivity radius is defined similarly with respect to the

graph metric on the 1-skeletons of X̃ and X. This notion has been studied in [13] where

it was shown that there exist Ramanujan complexes of “large girth” in this sense. See

Proposition 3.3 there and Corollary 5.2 below.

Before moving to the chromatic number, let us make the following warning: every

simplicial complex X can be considered as a hypergraph H , when we take the maximal

simplices (facets) of X to be the edges of H . Moreover if X is pure, that is, all its facets

are of the same dimension, say d− 1, then H is a d-uniform hypergraph, that is, all of its

edges are of size d. The commonly used notion of girth in the theory of hypergraphs is

different than the one we are using here; it refers to the length of a minimal sequence of

the form x1, E1, x2, E2, . . . , xg, Eg, xg+1 where all x1, . . . , xg are different vertices, xg+1 = x1,

E1, . . . , Eg are edges and for any i = 1, . . . , g, {xi, xi+1} ⊂ Ei. This notion is not suitable

for the Ramanujan complexes or any clique complex: any two facets with a common

1-codimension wall give girth 2 in this definition (so, even the building has girth 2).

Anyway, the theory of hypergraphs of high girth and high-chromatic number has been

developed quite intensively. See [17] for a nice survey. The reader is referred also to

[6, 7, 13] for related notions of girth for simplicial complexes, based on local acyclicity.

The notion of chromatic number for simplicial complexes we will use is the same

as the one commonly used for hypergraphs. Let X be a (d− 1)-dimensional simplicial

complex with a set of vertices V .

Definition 1.1. The chromatic number of X, denoted χ(X), is the minimal number

of colors needed to color the vertices of X, so that no facet (i.e., maximal face) is

monochromatic. �

Clearly χ(X) is bounded from above by the chromatic number of the graph

X(1)(= the 1-skeleton of X).

Let us now recall what are Ramanujan complexes and how they are constructed:

Let F be the local nonarchimedean field Fq((t)), that is, the field of Laurent power series
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11522 S. Evra et al.

over Fq, where Fq is the finite field of order q. Let B=Bd(F ) be the Bruhat–Tits build-

ing associated with PGLd(F ). It is an infinite (d− 1)-dimensional countable simplicial

complex, whose vertices come naturally with types in Z/dZ, denoted τ : B(0)→Z/dZ (see

[15] and the references therein) in such a way that in every (d− 1)-face all vertices are

of different types. In particular, its chromatic number is at most d. (Even its 1-skeleton

has chromatic number d.) In fact, its chromatic number is 2, since we can divide the

set of d types Z/dZ into two nonempty disjoint sets and then using only two colors, we

get that no (d− 1)-cell is monochromatic. If Γ is a co-compact lattice in G = PGLd(F ),

with dist(Γ ) :=min1 �=γ∈Γ,x∈B dist(γ.x, x)≥ 2, then Γ \B is a finite simplicial complex. If Γ

preserves the types of the vertices of B, Γ \B is also d-colorable (and even 2-colorable).

The injectivity radius of Γ \B is �dist(Γ )−1
2 �.

We will use the remarkable lattice Λ constructed by Cartwright and Steger [2],

which acts transitively on the vertices of B, and, in particular, does not preserve the

types of the vertices of B. In this Λ we will choose suitable sequence of congruence

subgroups Λ( fn) for some fn∈ Fq[ 1
t ], n∈N, and show that the sequence of simplicial

complexes, Xn=Λ( fn)\B, satisfies

Theorem 1.2. For every integer d≥ 3 and odd prime power q such that (q, d)= 1,

there exists a sequence of finite (d− 1)-dimensional simplicial complexes (Xn)n∈N with

|Xn|→∞, covered by Bd(Fq((t))), with injectivity radius

r(Xn)≥
logq |Xn|

2(d− 1)(d2 − 1)
− 1

2

(so, the chromatic number of every ball of radius
logq |Xn|

2(d−1)(d2−1)
− 1

2 is two), while

χ(Xn)≥ 1
2 · q

1
2d

and so, χ(Xn)→∞ when q→∞. In particular, by letting q→∞, this gives for every

d≥ 3, (d− 1)-dimensional simplicial complexes of arbitrarily large “girth” (twice the

injectivity radius) and arbitrarily large chromatic number. �

Note that in order to have arbitrarily large chromatic number, q must go to infin-

ity, otherwise the chromatic number of Xn, even as graphs, would be bounded since the

degree would be bounded.

Moreover, for these complexes

diam(Xn)≤
4 logq |Xn|

d2
≤ 8d · r(Xn),
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11523

for q�d (see Remark 6.2). In particular, up to radius diam(Xn)

8d , the chromatic number of

a ball in Xn is 2, and only for bigger balls it grows, eventually to infinity.

As mentioned before, the fact that the quotients by congruence subgroups

give large injectivity radius (and no small nontrivial homology cycles) was shown by

Lubotzky and Meshulam in [13] (see [8, Section 4.1] for a “general principle” of this kind).

So the main novelty of the current paper is giving a lower bound on the chromatic num-

ber for some carefully chosen congruence subgroups (see Section 5.3 below). To this end,

we will prove the following result which is of independent interest.

Theorem 1.3 (Colorful Mixing Lemma). Let F be a nonarchimedean local field with

finite residue field Fq, q odd, d≥ 3, and B=Bd(F ), the Bruhat–Tits building associated

with PGLd(F ). Let Γ ≤ PGLd(F ) be a co-compact lattice preserving the type (coloring)

function of B(0) with injectivity radius ≥ 2, so X = Γ \B is a simplicial complex with a

type function τ : X(0)→Z/dZ. For each type i ∈Z/dZ= {1, 2, . . . , d}, let Vi ⊂ X(0) be the

set of vertices of type i, that is, Vi = τ−1(i).

Then for any choice of subsets Wi ⊆ Vi we have

∣∣∣∣∣ |E(W1, . . . , Wd)|
|X(d− 1)| −

d∏
i=1

|Wi|
|Vi|

∣∣∣∣∣≤ 2d

q
1
2

,

where E(W1, . . . , Wd) is the set of all (d− 1)-dimensional cells with exactly one vertex in

each Wi, i = 1, . . . , d. �

So, the lemma ensures that when q� 0, the number |E(W1, . . . , Wd)| of facets

with one vertex from each Wi is approximately what one should expect by random

considerations.

This mixing lemma will be deduced from a more general one (see Corollary 3.7

below) using a result of Oh [18] which gives a quantitative estimate for Kazhdan property

(T) of PGLd(F ). In this argument, we follow a related use of Oh’s work in [5].

It is interesting to observe that the above mixing lemma is for quotients of

B=Bd(F ) on which the d-coloring by the d types is preserved, but eventually our main

theorem is about X f =Λ( f)\B which are not d-colorable (in fact, our main goal is to

show that they need many more colors!) We will acquire this by applying the color-

ful mixing lemma to the natural d-colorable d-sheeted cover of X f (see Section 5 for

details).

The paper is organized as follows. After a few preliminaries in Section 2, we

show in Section 3 how the discrepancy of a colorful simplicial complex can be estimated
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11524 S. Evra et al.

using the eigenvalues of some naturally associated bipartite graphs. In Section 4, we

will use Oh’s theorem and apply it to the colorable quotients of the Bruhat–Tits build-

ing of PGLd(F ), to estimate these eigenvalues. In Section 5, we will follow carefully

[16] to choose the suitable congruence subgroups Λ( f) of Λ—the Cartwright–Steger

lattice. We will use the congruence subgroups Λ( f) for which Λ( f)\B is a nonpar-

tite complex, see there. In Section 6, we collect all the information together and prove

Theorem 1.2.

This paper is dedicated to Nati Linial who has pioneered the study of high-

dimensional expanders and many other things.

2 Notations and Conventions

Throughout this paper H is a finite d-uniform hypergraph, that is, H = (V, E) and

E ⊂ ( V
d ). We say that H has a d-type function τ : V = V(H)→Z/dZ if each edge con-

tains vertices of all d types, that is, τ is one-to-one when restricted to each edge e∈ E .

We call such hypergraph d-partite and we also write it as H = (V0, . . . , Vd−1, E), where

Vi = τ−1(i), i ∈Z/dZ, and so E can be considered as a subset of
∏d−1

i=0 Vi. A 2-partite hyper-

graph is what is usually called a bipartite graph. Sometimes it is more convenient to

think of Z/dZ as {1, . . . , d}.
Recall that a simplicial complex X = (V, E) is a family E of finite subsets (called

faces or simplicies) of the set of vertices V closed under inclusion, that is, if F1 ∈ E and

F2 ⊆ F1 then F2 ∈ E .

For F ∈ E , denote dim(F )= |F | − 1 and X(i) the set of simplices of dimension

i. We say that dim(X)=d if X(d) �= ∅ while X(d+ 1)=∅. It is called a pure complex of

dimension d, if every maximal face in E is of dimension d. Given X = (V, E), we denote

by X(i) the i-skeleton of X, this is the subcomplex of X of all the faces F in E with

dim(F )≤ i.

Given a pure simplicial complex X = (V, E) of dimension (d− 1), one can

associate with it the d-uniform hypergraph H = H̃(X)= (V, X(d− 1)). Conversely if

H = (V, E) is a d-uniform hypergraph then by taking Ẽ = {F ⊆ V | ∃ e∈ E with F ⊆ e} we

get a pure simplicial complex X = X̃(H)= (V, Ẽ) of dimension d− 1. Clearly, X̃(H̃(X))= X

and H̃(X̃(H))= H . Moreover if τ is a type function on H , it defines a type function on X

such that when restricted to every maximal face (facet) it is one-to-one. Such complexes

are called balanced.

The theories of pure simplicial complexes and uniform hypergraphs are there-

fore completely equivalent. In this paper, we will use these languages interchangeably.
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11525

3 Discrepancy

For a d-partite hypergraph H = (V1, . . . , Vd, E), and a collection of subsets Wi ⊆ Vi,

i = 1, . . . , d, denote E(W1, . . . , Wd)= E ∩∏d
i=1 Wi, the edges in E with vertices in

W1, . . . , Wd. We define the discrepancy of W1, . . . , Wd in H to be

discH (W1, . . . , Wd)=
∣∣∣∣∣ |E(W1, . . . , Wd)|

|E | −
d∏

i=1

|Wi|
|Vi|

∣∣∣∣∣ .
In other words, the discrepancy measures the difference between the actual portion of

edges between W1, . . . , Wd and the expected portion if the hyperedges would have been

chosen randomly uniformly.

For a biregular bipartite graph, the expander mixing lemma provides an upper

bound on the discrepancy in the terms of the the second largest eigenvalue of the graph.

In this section, our aim is to give a similar bound for d-partite hypergraphs.

3.1 Discrepancy of bipartite graphs

Let G = (V1, V2, E) be a finite connected bipartite (k1, k2)-biregular graph on n vertices,

that is, each vertex in V1 has exactly k1 neighbors, all of them in V2, and each vertex in

V2 has k2 neighbors, all of them in V1, |V1| + |V2| =n, and so k1|V1| = k2|V2| = |E |.
Recall that the adjacency operator A= A(G) of the graph G is the following

operator on the space of complex valued functions on the vertices

(Af)(v)=
∑
u∼v

f(u),

where u∼ v stands for (u, v) ∈ E .

The following lemmas are probably known, but for lack of a suitable reference

we give short proofs.

Lemma 3.1. Let λn≤ · · · ≤ λ2 ≤ λ1 be the eigenvalues of the adjacency operator A of G.

Then

(1) The spectrum is symmetric, that is, λn−i+1 =−λi for all i.

(2) The largest (respectively, smallest) eigenvalue is λ1 =
√

k1k2 (respectively,

λn=−
√

k1k2), whose corresponding eigenfunction is
√

k11V1 +
√

k21V2 (respec-

tively,
√

k11V1 −
√

k21V2 ). �
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11526 S. Evra et al.

Proof. Let f be an eigenfunction of A with an eigenvalue λ, that is, Af = λ · f . Then it

is easy to see that the following function

g(v)=
⎧⎨
⎩ f(v) if v ∈ V1

− f(v) if v ∈ V2

satisfies Ag= (−λ) · g, which proves (1).

If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2. The operator A2

expresses the 2-step walk on G, that is, the (v, u)-entry in the matrix of A2 equals the

number of paths of length 2 in G connecting the vertices v and u. By the (k1, k2)-regularity

condition, the sum of any row of the matrix A2 is k1k2. Thus, A2 is the adjacency matrix

of a k1k2-regular multigraph, that is, a graph with loops and multiple edges, and hence

its largest eigenvalue is k1k2. Thus the largest eigenvalue of A is
√

k1k2, and by (1), the

smallest is −√k1k2.

By the biregularity condition,

A(1V1)= k21V2 and A(1V2)= k11V1 .

Hence

A(
√

k11V1 ±
√

k21V2)=±
√

k1k2(
√

k11V1 ±
√

k21V2). �

Lemma 3.2 (Expander mixing lemma for bipartite graphs). Let G = (V1, V2, E) be a bipar-

tite (k1, k2)-biregular finite connected graph. Let λ= λ(G) be the second largest eigen-

value of the adjacency operator of G. Then for any S⊆ V1 and T ⊆ V2,

∣∣∣∣|E(S, T)| −
√

k1k2|S||T |√|V1||V2|

∣∣∣∣≤ λ(G)
√
|S||T |. (1)

�

Proof. As before, denote by A the adjacency matrix of G, and its spectrum by λn≤ · · · ≤
λ2 ≤ λ1. Note that

|λ1| = |λn| =
√

k1k2 and |λi| ≤ λ(G) for i = 2, . . . , n− 1.

Let f1, . . . , fn be an orthonormal basis of eigenfunctions of A, that is, Afi = λi fi and

〈 fi, fj〉 = δi, j, where the inner product is defined as

〈 f, g〉 =
∑

v∈V1�V2

f(v)g(v).
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11527

Let 1S and 1T be the characteristic functions of S and T , respectively. Then

|E(S, T)| = 〈A1S,1T 〉. Expressing them as linear combinations of orthonormal eigenvec-

tors of A

1S =
n∑

i=1

si fi and 1T =
n∑

i=1

ti fi,

we get

|E(S, T)| = 〈A1S,1T 〉 =
n∑

i=1

sit̄iλi = s1t̄1λ1 + snt̄nλn+
n−1∑
i=2

sit̄iλi.

By Lemma 3.1, we can assume that

f1 = 1√
k1|V1| + k2|V2|

(
√

k11V1 +
√

k21V2)

and

fn= 1√
k1|V1| + k2|V2|

(
√

k11V1 −
√

k21V2).

Hence, as k1|V1| = k2|V2|, we get

s1 = 〈 f1,1S〉 = |S|√
2|V1|

= sn and t̄1 = 〈 f1,1T 〉 = |T |√
2|V2|

=−t̄n.

Therefore, since λ1 =
√

k1k2 =−λn,

s1t̄1λ1 = snt̄nλn=
√

k1k2|S||T |
2
√|V1||V2|

.

And so,

∣∣∣∣|E(S, T)| −
√

k1k2|S||T |√|V1||V2|

∣∣∣∣=
∣∣∣∣∣
n−1∑
i=2

sit̄iλi

∣∣∣∣∣≤ λ(G)

n−1∑
i=2

∣∣sit̄i
∣∣≤ λ(G)

√√√√(n−1∑
i=2

|si|2
)(

n−1∑
i=2

|ti|2
)

≤ λ(G)
√
‖1S‖2‖1T‖2 ≤ λ(G)

√
|S||T |. �

We learned recently that Lemma 3.2 appears also in [1].

Recall that the normalized adjacency operator Ã= Ã(G) of a graph G is the fol-

lowing operator on the space of complex valued functions on the vertices

(Ã f)(v)= 1

deg v

∑
u∼v

f(u), (2)

where u∼ v stands for (u, v) ∈ E .
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11528 S. Evra et al.

For a biregular bipartite graph G if f is an eigenfunction of the adjacency oper-

ator A(G) with an eigenvalue λ, then 1√
deg v

f(v) is an eigenfunction of the normalized

adjacency operator Ã(G) with an eigenvalue λ√
k1k2

.

In particular, the largest and smallest eigenvalues of the normalized adjacency

operator are 1 and (−1), respectively. The second largest eigenvalue λ̃ of Ã is equal to

λ̃(G)= λ(G)√
k1k2

. (3)

Definition 3.3. Let G = (V1, V2, E) be a bipartite graph, S⊆ V1 and T ⊆ V2. Then the dis-

crepancy of these subsets is defined to be

discG(S, T)=
∣∣∣∣ |E(S, T)|

|E | − |S|
|V1|

|T |
|V2|

∣∣∣∣ . �

In these terms, the following statement is a corollary of the Expander Mixing

Lemma (Lemma 3.2).

Corollary 3.4. Let G = (V1, V2, E) be a bipartite (k1, k2)-biregular finite graph. Then for

any S⊆ V1, T ⊆ V2

discG(S, T)≤ λ̃(G) ·
√
|S|
|V1|

|T |
|V2| �

Proof. By the (k1, k2)-biregularity of G

|E | = k1|V1| = k2|V2| =
√

k1k2|V1||V2|,

hence √
k1k2|S||T |√|V1||V2|

= |E | ·
( |S||T |
|V1||V2|

)
.

And therefore, by Lemma 3.2, we get

∣∣∣∣ |E(S, T)|
|E | − |S|

|V2|
|T |
|V1|

∣∣∣∣≤ λ(G)√
k1k2

√
|S||T |
|V1||V2| . �

3.2 Discrepancy of hypergraphs

Let H = (V1, . . . , Vd, E) be a d-partite hypergraph. Our aim is to give estimates and

bounds on its discrepancy. We will do it by defining various associated bipartite graphs

and then we will bound the discrepancies of H by their discrepancies.

For i = 1, . . . , d, denote Ei = {F \ {vi} | F ∈ E, vi ∈ Vi}, that is, the set Ei is the set of

of all edges of H with the vertex of type i being removed. A set Y ∈ Ei is called a wall
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11529

of cotype i. Denote by Hi = (V1, . . . , Vi−1, Vi+1, . . . , Vd, Ei) the (d− 1)-partite hypergraph

induced from H by removing the vertices of type i.

Denote by Bi the bipartite graph with Vi as one set of vertices and Ei as the

second. A vertex vi ∈ Vi and a wall Y ∈ Ei are connected by an edge of Bi if their union

forms an edge of H , that is, {vi} ∪ Y ∈ E . We will write Bi = (Vi, Ei, EBi ). An edge of Bi is

a pair (vi, F \ {vi}), where F ∈ E is an edge of H . Following the terminology of simplicial

complexes, this is the “vertices versus walls” graph. Note that since every edge of H

has exactly one vertex in Vi, there is a natural bijection between the edges of Bi and the

edges of H .

As before, for a collection of subsets Wj ⊆ Vj for j = 1, . . . , d, we denote by

E(W1, . . . , Wd) the set of all edges of H with vertices in the sets W1, . . . , Wd. Analo-

gously, for Hi we will denote by Ei(W1, . . . , Wd) the subset of all edges with vertices

in W1, . . . , Wi−1, Wi+1, . . . , Wd. For the graph Bi we will denote by EBi (Wi, Ei(W1, . . . , Wd))

the set of all edges of Bi with one vertex in Wi and the other in Ei(W1, . . . , Wd). Note that

the above-mentioned bijection between the edges of H and Bi restricts to a bijection

between E(W1, . . . , Wd) and EBi (Wi, Ei(W1, . . . , Wd)).

The following lemma reduces the question of bounding the discrepancy of a

d-partite hypergraph to its induced hypergraphs and bipartite graphs.

Lemma 3.5. Let Wj ⊆ Vj for j = 1, . . . , d. Then for i = 1, . . . , d,

discH (W1, . . . , Wd)≤ discBi (Wi, Ei(W1, . . . , Wd))+ |Wi|
|Vi| discHi (W1, . . . , Wi−1, Wi+1, . . . , Wd).

(4)

�

Proof. By the definition of the bipartite graph Bi

|E(W1, . . . , Wd))|
|E | = |EBi (Wi, Ei(W1, . . . , Wd))|

|EBi |
and hence

discH (W1, . . . , Wd)

=
∣∣∣∣∣∣
|E(W1, . . . , Wd)|

|E | −
d∏

j=1

|Wj|
|Vj|

∣∣∣∣∣∣
=
∣∣∣∣∣∣
|E(W1, . . . , Wd)|

|E | − |Wi|
|Vi| ·

|Ei(W1, . . . , Wd)|
|Ei| + |Wi|

|Vi| ·
⎛
⎝ |Ei(W1, . . . , Wd)|

|Ei| −
d∏

j=1, j �=i

|Wj|
|Vj|

⎞
⎠
∣∣∣∣∣∣
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≤
∣∣∣∣ |EBi (W1, . . . , Wd)|

|EBi |
− |Wi|
|Vi| ·

|Ei(W1, . . . , Wd)|
|Ei|

∣∣∣∣+ |Wi|
|Vi| ·

∣∣∣∣∣∣
|Ei(W1, . . . , Wd)|

|Ei| −
d∏

j=1, j �=i

|Wj|
|Vj|

∣∣∣∣∣∣
= discBi (Wi, Ei(W1, . . . , Wd))+ |Wi|

|Vi| · discHi (W1, . . . , Wi−1, Wi+1, . . . , Wd). �

Definition 3.6. A d-partite hypergraph H is called type-regular if for any type i,

1≤ i ≤d, there exist ki, li ∈N, such that each i-type vertex is contained in exactly ki

hyperedges in H and each cotype i wall is contained in exactly li hyperedges in H .

Note that if H is type-regular, then each induced bipartite graph Bi, defined above, is

(ki, li)-biregular. �

Recall that for a graph G we denote by λ̃(G) the normalized second largest eigen-

value. We can now generalize Corollary 3.4 from graphs to hypergraphs.

Corollary 3.7. Let H be a d-partite type-regular hypergraph. Let Bi = (Vi, Ei, EBi ),

i = 1 . . . , d, be the induced bipartite graphs of H , as defined above. Then for any

W1 ⊆ V1, . . . , Wd⊆ Vd,

discH (W1, . . . , Wd)≤
d−1∑
i=1

(
λ̃(Bi) ·

√
|Wi|
|Vi|

)
.

In particular
max
Wi⊆Vi

discH (W1, . . . , Wd)≤ (d− 1) · max
1≤i≤d−1

λ̃(Bi).

�

Proof. Since H is type-regular, for any type i ∈Z/dZ, there exists a number li ∈N, such

that any wall of cotype i is contained in exactly li facets. Hence,

li|Ei(W1, . . . , Wd)| = |E(W1, . . . , Wi−1, Vi, Wi+1, . . . , Wd)| and li|Ei| = |E |,

and so,

discHi (W1, . . . , Wd)=
∣∣∣∣∣∣
|Ei(W1, . . . , Wd)|

|Ei| −
d∏

j=1, j �=i

|Wj|
|Vj|

∣∣∣∣∣∣
=
∣∣∣∣∣∣
|E(W1, . . . , Wi−1, Vi, Wi+1, . . . , Wd)|

|E | − |Vi|
|Vi|

d∏
j=1, j �=i

|Wj|
|Vj|

∣∣∣∣∣∣
= discH (W1, . . . , Wi−1, Vi, Wi+1, . . . , Wd). (5)
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Corollary 3.4 gives that for any i = 1, . . . , d,

discBi (Wi, Ei(V1, . . . , Vi−1, Wi+1, . . . , Wd))≤ λ̃(Bi) ·
√
|Wi|
|Vi| .

So, by iterating on Lemma 3.5 and Equation (5), we get

discH (W1, . . . , Wd)≤ λ̃(B1) ·
√
|W1|
|V1| + discH (V1, W2, . . . , Wd)

≤ λ̃(B1) ·
√
|W1|
|V1| + λ̃(B2) ·

√
|W2|
|V2| + discH (V1, V2, W3, . . . , Wd)

≤ · · · ≤
d−1∑
i=1

λ̃(Bi) ·
√
|Wi|
|Vi| + discH (V1, V2, . . . , Vd−1, Wd)=

d−1∑
i=1

λ̃(Bi) ·
√
|Wi|
|Vi| .

The last equality follows from the fact that discH (V1, V2, . . . , Vd−1, Wd)= 0, since any ver-

tex w of Wd is contained in kd edges and for elements w �=w′ of Wd these edges are

different. �

4 Colorful Mixing Lemma for Ramanujan Complexes

The goal of this section is to prove the Colorful Mixing Lemma (Theorem 1.3).

Let F be a local nonarchimedean field whose residue field is of order q, and let

B=Bd(F ), d≥ 3, be the Bruhat–Tits building of type Ãd−1 associated with PGLd(F ). The

building is equipped with a natural d-type function which gives it a structure of an infi-

nite d-partite hypergraph. For any co-compact lattice Γ ≤ PGLd(F ) preserving the type

function, the quotient BΓ = Γ \Bd(F ) is a finite d-partite hypergraph. Recall the notation

dist(Γ )=minx∈B,1 �=γ∈Γ dist(γ.x, x), and that the injectivity radius r(Γ ) of BΓ is equal to

�dist(Γ )−1
2 �, since the building B is its universal cover. The Colorful Mixing Lemma reads

as follows. Assuming that the injectivity radius of BΓ is at least 2, for any choice of

subsets Wi of vertices of BΓ of type i

discBΓ
(W1, . . . , Wd)≤ 2d

q1/2
. (6)

4.1 The building of type Ãd−1

In this section, we review the structure and basic properties of the building Bd(F ).

Rather than using the general language of buildings, we will present it and prove its

properties from basic principles.
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Let F be a local nonarchimedean field with a discrete valuation ν : F ∗ →Z, let O
be the ring of integers of F , π a uniformizer and q <∞ the cardinality of the residue field

F̄ =O/πO. For example, F = Fq((t)) the field of Laurent series over Fq, ν = deg, O= Fq[[t]]

the Taylor series and π = t.

The building B=Bd(F ) associated with a local field F is an infinite (d− 1)-

dimensional pure simplicial complex constructed as follows.

Vertices. A lattice is a free O-submodule of V = F d of rank d, that is, it is of the

form 〈v1, . . . , vd〉 =Ov1 + · · · +Ovd where {v1, . . . , vd} is a basis for V . Two lattices L1, L2

are said to be equivalent if there exists λ ∈ F ∗ such that L1 = λL2. The equivalence class

of a lattice L is denoted by [L]. The set of equivalence classes of lattices forms the set of

vertices of the building B.

Faces. Two vertices [L1], [L2] are connected by an edge in the building if there

exist representatives L ′1 ∈ [L1], L ′2 ∈ [L2] such that π L ′1 ⊂ L ′2 ⊂ L ′1. Note that L ′1/π L ′1 is a

d-dimensional vector space over the finite field F̄ =O/πO. Fixing a representative L ′1 of

a vertex [L1] gives rise to a one-to-one correspondence between the neighbors of [L1] and

the proper subspaces of L ′1/π L ′1.

A set of vertices {[L1], . . . , [Lk]} forms a (k− 1)-face in the building if there exist

representatives L ′i ∈ [Li] such that (maybe, after renumbering) π L ′1 ⊂ L ′k⊂ · · · ⊂ L ′2 ⊂ L ′1.

Note that a (k− 1)-simplex in the building gives rise to a k-flag of subspaces in L ′1/π L ′1,

hence the dimension of the building is (d− 1).

The link of every vertex of B is isomorphic to the flag complex of F̄ d= F
d
q.

Action of GLd(F ). The group GLd(F ) acts transitively on the lattices in F d,

and its center preserves the equivalence classes, hence this action induces an action

of G = PGLd(F ) on the vertices of the building. The stabilizer of the vertex [Od], which

is called the standard lattice, is K = PGLd(O), hence the set G/K may be identified with

the set of vertices of the building, and multiplication on the left by G on G/K may be

identified with the action of G on the building.

Type function. For each vertex [L] there exists an element g∈G such that

[L]= g[Od]. Define the type of [L] to be τ([L])= ν(det(g)) mod d. It is well defined since

for k∈ K the determinant det(k) ∈O∗ and hence ν(det(k))= 0. This defines a type func-

tion from the vertices of the building to Z/dZ. Note that a maximal simplex contains

vertices of all d types.

For i ∈Z/dZ, denote Gi = (ν ◦ det)−1(i). Then G0 is the subgroup of G of type-

preserving elements, and Gi are its cosets. We saw before that the vertices of the build-

ing may be identified with G/K. Under this identification, Gi/K is the set of vertices of

type i.
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The group G0 of type-preserving elements is equal to PSLd(F ) · K. It is a normal

subgroup of G = PGLd(F ) of index d, since G0 = {g∈G | ν(det(g))= 0 mod d}.
Let now Γ be a co-compact discrete subgroup of G which is contained in G0 and

BΓ = Γ \B. This is a finite simplicial complex and τ is well defined on BΓ . The vertices V

of BΓ may be identified with Γ \G/K, and in this case the i-typed vertices Vi of BΓ are

identified with Γ \Gi/K.

Relative position. Define the set A+ = {a= (a1, . . . , ad) ∈Z
d/(1, . . . , 1)Z | a1 ≤ · · · ≤

ad}, and let Λ+ be the set of diagonal matrices in PGLd(F ) of the form πa= π(a1,...,ad) =
diag(πa1 , . . . , πad) for (a1, . . . , ad) ∈ A+. Denote A0 = {(a1, . . . , ad) ∈ A |∑ai ≡ 0 mod d}. The

Cartan decomposition G = KΛ+K, means that each element g∈G may be written

uniquely as g= k1π
ak2 for k1, k2 ∈ K and a∈ A+. By identifying the vertices of the build-

ing with G/K, for any two vertices x= gK and y= hK we define the relative position of

y w.r.t. x, to be the unique element a∈ A+ such that Kg−1hK = KπaK. We get a function

B(0)× B(0)→ A+, where B(0) is the set of vertices of B.

In other words, for two vertices x and y consider a basis {v1, . . . , vd} of F d,

such that x= [Ov1 + · · · +Ovd] and y= [πa1Ov1 + · · · + πadOvd] (one can always find such a

basis). Let g∈G = PGLd(F ) be the element which sends the standard basis to {v1, . . . , vd},
and let a= (a1, . . . , ad) ∈ A+. Then x= g.[Od] and y= (gπa).[Od], hence “x−1y”= πa, and the

relative position of y w.r.t. x is a. We also see that in this case τ(x)− τ(y)≡−∑ai mod d,

and the relative position of x w.r.t. y is (0, ad− ad−1, . . . , ad− a1). In addition, if y is in rel-

ative position (a1, . . . , ad) w.r.t. x, then the distance between them, that is, the number of

edges in the shortest path connecting them, is equal to dist(x, y)= ad− a1. The action of

G on B preserves the relative position of pairs of vertices.

We note that by the Cartan decomposition, for any a∈ A+, K acts transitively

on the vertices of a fixed relative position a w.r.t. the standard lattice x0 = [Od]. By the

transitivity of the action of G, for any vertex x, Kx= StabG(x) acts transitively on the

vertices of relative position a w.r.t. x.

Various combinatorial aspects of the building can be expressed by the relative

position.

Lemma 4.1. Let y be a vertex in the building with relative position a= (a1, . . . , ad) w.r.t.

x. Then

(1) x and y are neighbors if and only if ad= a1 + 1, that is, a= (0, . . . , 0, 1 . . . , 1).

(2) x and y are of the same type if and only if
∑

ai = 0 mod d, that is, a∈ A0.

(3) x and y are separated by a common wall of codimension 1 (i.e., there exists

a (d− 2)-face σ such that σ ∪ {x} and σ ∪ {y} are both (d− 1)-faces) if and
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11534 S. Evra et al.

only if either a= (0, . . . , 0), that is, they coincide, or a= (−1, 0, . . . , 0, 1)=
(0, 1, . . . , 1, 2). �

Proof. Statements (1) and (2) follow immediately from the definition of the relative posi-

tion and the discussion above.

To prove (3), assume first that y is in relative position (0, 1, . . . , 1, 2)

w.r.t. x. This implies that x has a representative L with an O-basis {v1, . . . , vd}
such that L ′ = 〈v1, πv2, . . . , πvd−1, π

2vd〉 represents y. For i = 1, . . . , d− 1, denote

Li = 〈v1, . . . , vi, πvi+1, . . . , πvd〉. Then the set σ = {zi = [Li] | 1≤ i ≤d− 1} forms a (d− 2)-

cell, and both σ ∪ {x} and σ ∪ {y} are facets of B, since

π L ⊂ L1 ⊂ · · · Ld−1 ⊂ L and π Ld−1 ⊂ L ′ ⊂ L1 ⊂ · · · ⊂ Ld−1.

To see the opposite direction, assume that there exists a (d− 2)-cell σ with both

σ ∪ {x} and σ ∪ {y} being facets of B. As the link of every vertex of B is the flag complex

of F
d
q, one can deduce that σ is contained in (q + 1) facets. The fact that σ ∪ {x} is a facet,

implies that there exists a representative L of x with an O-basis {v1, . . . , vd} such that

σ = {zi = [Li] | 1≤ i ≤d− 1}, where Li = 〈v1, . . . , vi, πvi+1, . . . , πvd〉.
Here is a list of representatives of (q + 1) vertices {yε = [L ′ε] | ε ∈ Fq ∪ {∞}} such

that σ ∪ {yε} is a facet of B

L ′∞ = 〈πv1, . . . , πvd〉 (note that y∞ = [L ′∞]= x)

and for ε ∈ Fq

L ′ε = 〈v1 + ε · πvd, πv2, . . . , πvd−1, π
2vd〉.

One can easily check that all the yε’s are not equivalent and σ ∪ {yε} is a facet, so these

are all the facets containing σ . For every ε ∈ Fq, yε is in relative position (0, 1, . . . , 1, 2)

w.r.t. x. This can be seen by taking {v1 + ε · πvd, v2, . . . , vd} as a basis for L. �

4.2 Hecke operators

For any a= (a1, . . . , ad) ∈ A+, define the following Hecke operator on the vertices of the

building Ha : L2(B(0))→ L2(B(0)),

Ha f(xK)= 1

μ(KπaK)

∑
yK∈xKπaK

f(yK),

where μ is the Haar measure on G, normalized such that μ(K)= 1, (i.e., μ(KπaK)=
|KπaK/K|). This is the normalized finite sum over the vertices yK of relative position
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Mixing Properties and the Chromatic Number of Ramanujan Complexes 11535

a w.r.t. xK. Note that μ(KπaK) is equal to the number of vertices which are of relative

position a w.r.t. x.

A lattice Γ of G acts on the left while the Hecke operator Ha acts on the right,

so these two actions on L2(G/K) commute. Hence, we can consider Ha also as a map

Ha : L2(V)→ L2(V) where V is the set of vertices of Γ \B, so

Ha f(Γ xK)= 1

μ(KπaK)

∑
Γ yK∈Γ xKπaK

f(Γ yK).

Moreover if a∈ A0, then the type of each yK ∈ xKπaK is the same as that of xK,

so we may consider Ha as a map Ha : L2(Vi)→ L2(Vi), where Vi is the set of vertices of

type i.

Finally, note that if we consider f ∈ L2(Γ \G/K), as a right K-invariant function

in L2(Γ \G), and dk is the Haar measure on K, normalized such that dk(K)= 1, we may

write Ha as an integral over K, instead of a sum,

Ha f(x)=
∫

K
f(xkπa) dk.

Let (ρ, L2(Γ \G)) be the unitary G-representation, given by right translations

ρ(g) f(x)= f(xg). The following lemma will allow us to give bounds on the spectra of

the Hecke operators, assuming we have bounds on the matrix coefficients of the rep-

resentation L2(Γ \G). Bounds on the matrix coefficients will be given at the end of this

section, using a theorem by Oh.

Lemma 4.2. Let a∈ A+. For any right K-invariant vectors f1, f2 in L2(Γ \G),

〈Ha f1, f2〉 = 〈ρ(πa) f1, f2〉
�

Proof.

〈Ha f1, f2〉 =
∫
Γ \G

Ha ( f1(x)) f2(x) dx

=
∫
Γ \G

(∫
K

f1(xkπa) dk
)

f2(x) dx

=
∫

K

(∫
Γ \G

f1(xkπa) f2(x) dx
)

dk,
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where the last equality follows from Fubini’s theorem. Since the measure dx is right

invariant we can replace x by xk, and by the right K-invariance of f2 we get

〈Ha f1, f2〉 =
∫

K

(∫
Γ \G

f1(xπa) f2(x) dx
)

dk

=
∫
Γ \G

f1(xπa) f2(x) dx= 〈ρ(πa) f1, f2〉. �

Definition 4.3. Denote G+ = PSLd(F ) and note that it is the subgroup of G = PGLd(F )

generated by unipotent elements of G. �

Definition 4.4. For a finite set X, denote L2
0(X)= {g∈ L2(X) | 〈g,1X〉 = 0} the subspace of

L2(X) of functions orthogonal to the constant function. �

Lemma 4.5. Let i ∈Z/dZ. A function f ∈ L2
0(Vi) extended to a function on V by setting

it zero outside Vi and regarded as a right K-invariant function in L2(Γ \G) is orthogonal

to any right G+-invariant function in L2(Γ \G). �

Proof. Let h∈ L2(Γ \G) be a right G+-invariant function. Define h̃(x)= ∫
K h(xk) dk.

Recall that the type-preserving subgroup G0 is equal to G+K. So, h̃ is right G+-invariant

and right K-invariant, and hence right G0-invariant. Since each Gi is a G0-coset, h̃ is

constant on each Γ \Gi and hence on Vi = Γ \Gi/K. Now, since f ∈ L2
0(Vi) we get that

〈 f, h̃〉 = 0.

On the other hand,

〈 f, h〉 =
∫
Γ \G

f(x)h(x) dx=
∫

K

(∫
Γ \G

f(x)h(x) dx
)

dk=
∫

K

(∫
Γ \G

f(xk−1)h(x) dx
)

dk

=
∫

K

(∫
Γ \G

f(y)h(yk) dy
)

dk=
∫
Γ \G

f(y)

(∫
K

h(yk) dk
)

dy=
∫
Γ \G

f(y)h̃(y) dy= 〈 f, h̃〉,

where again we used:
∫

K dk= 1, the right K-invariance of f , the Haar measure dx being

right invariant and Fubini’s Theorem, respectively. So f is orthogonal to h, which proves

the claim. �

Recall that A0 = {(a1, . . . , ad) ∈ A|∑ai ≡ 0 mod d} is the set of type-preserving

translations (see Lemma 4.1). So, for any a∈ A0 the Hecke operator Ha is a well-defined

operator from L2(Vi) to itself, for any type i.

Combining Lemmas 4.2 and 4.5, we get the following bound on the norm of the

Hecke operator in terms of the matrix coefficients.
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Corollary 4.6. For any type i ∈Z/dZ and any a∈ A0,

‖Ha‖L2
0(Vi)

≤ sup
f1, f2
〈ρ(πa) f1, f2〉,

where f1, f2 run over all the right K-invariant normalized vectors in L2(Γ \Gi) orthog-

onal to any right G+-invariant vector (when considered as functions in L2(Γ \G) as in

Lemma 4.5.) �

Proof. Let f1, f2 ∈ L2
0(Vi) of norm 1 be such that ‖Ha‖L2

0(Vi)
= 〈Ha f1, f2〉. By Lemma 4.2,

‖Ha‖L2
0(Vi)

= 〈ρ(πa) f1, f2〉

and by Lemma 4.5, f1, f2 are orthogonal to any right G+-invariant vector in L2(Γ \G),

which proves the claim. �

4.3 Adjacency operators

Again let Γ be a co-compact lattice in G with Γ ⊆G0, that is, Γ preserves the type

function. So BΓ = Γ \B is a d-partite hypergraph.

Recall that for each type i ∈Z/dZ, the induced bipartite graph Bi of the d-partite

hypergraph BΓ has the i-type vertices Vi on one side, and the walls Ei, that is, the simpli-

cies of dimension (d− 2) of cotype i, on the other side. A vertex and a wall are connected

if their union forms a maximal simplex in BΓ .

Let Ã= Ã(Bi) be the normalized adjacency operator of Bi, that is,

Ã f(x) := 1

deg(x)

∑
y∼x

f(y),

where the summation is over all the neighbors of x in Bi. In the natural basis the matrix

of Ã is a block matrix of the form

Ã=
(

0 N

Nt 0

)
,

where N is a matrix of size |Vi| × |Ei|.
Define Di to be the multigraph on Vi, where two vertices are connected by as

many edges as there are paths of length 2 in the graph Bi connecting them. Then

the matrix NNt is the matrix of the normalized adjacency operator of the multigraph

Di. Note that the number of loops on each vertex in Di is equal to the vertex degree

in Bi.
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The nonzero eigenvalues of the matrices NNt and NtN coincide, and λ �= 0 is an

eigenvalue of NNt if and only if
√

λ is an eigenvalue of Ã. So, in order to bound the

eigenvalues of Ã, it is enough to bound the eigenvalues of NNt.

Lemma 4.7. The operator NNt, as an operator from L2(Vi) to itself, is a convex sum of

two Hecke operators I = H(0,...,0) and H(−1,0,...,0,1), in fact,

NNt= 1

q + 1
I + q

q + 1
H(−1,0,...,0,1).

�

Proof. By Lemma 4.1, two vertices of type i of the building share a common wall if

and only if their relative position is either (0, . . . , 0) or (−1, 0, . . . , 0, 1), that is, a vertex

xK of type i shares a common wall with vertices which are either the right K-cosets in

xKπ(−1,0,...,0,1)K or xK itself.

In the quotient BΓ , the vertex Γ xK of type i can be lifted to the vertex xK in

the building. The i-type vertices in the building which share a common wall with xK

are mapped surjectively to the vertices in the quotient which share a common wall with

Γ xK in the quotient. Since Γ has injectivity radius ≥ 2, this map is also injective.

Hence, after the normalization, by the definition of the Hecke operators we get,

that

NNt= c(0,...,0)H(0,...,0) + c(−1,0,...,0,1)H(−1,0,...,0,1),

where ca is the number of edges in Di connecting a vertex xK to vertices of relative

position a with respect to it, divided by the degree of the vertex xK in the graph Di.

Clearly c(0,...,0) + c(−1,0,...,0,1) = 1.

Each wall of the building Bd(F ) is contained in exactly q + 1 chambers, and each

i-type vertex is contained in exactly r chambers (= facets), where the number r depends

on d and q, but not on the vertex. In the quotient BΓ , since the injectivity radius ≥ 2, each

wall is also contained in exactly q + 1 chambers and each i-type vertex is contained in

r chambers. Hence Bi is a bipartite (r, q + 1)-biregular graph. Therefore, Di is a r(q + 1)

regular multi-graph, where each vertex has exactly r loops, so c(0,...,0) = 1
q+1 , which com-

pletes the proof. �

We can now get the following bound on the normalized second largest eigenvalue

of Bi, in terms of matrix coefficients of a certain unitary representation.
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Corollary 4.8. Let (ρ, L2(Γ \G)) be the unitary G-representation given by right trans-

lation ρ(g) f(x)= f(xg). Let W≤ L2(Γ \G) be the subspace of right K-invariant vectors

which are orthogonal to all right G+-invariant vectors. For any g∈G, define ρW(g) to be

the maximal absolute value of a matrix coefficient of normalized vectors from W on the

element g, that is,

ρW(g)= sup
f1, f2∈W,‖ f1‖=‖ f2‖=1

|〈ρ(g) f1, f2〉|.

Then the normalized second largest eigenvalue of Bi, λ̃i = λ̃(Bi) satisfies

λ̃i ≤
√

1

q + 1
+ q

q + 1
ρW(π(−1,0,...,0,1))≤

√
q−1 + ρW(π(−1,0,...,0,1)).

�

Proof. By Lemma 4.7 and the discussion before it,

λ̃i =
√
‖NNt‖L2

0(Vi)
≤
√

1

q + 1
+ q

q + 1
‖H(−1,0,...,0,1)‖L2

0(Vi)
,

and, by Corollary 4.6, ‖H(−1,0,...,0,1)‖L2
0(Vi)

≤ ρW(π(−1,0,...,0,1)). �

4.4 Proof of the mixing Lemma

The following result by Oh gives a unified bound on the matrix coefficients of a unitary

representation of a reductive group over a local field.

Theorem 4.9. [18, Theorem 1.1] Let F be a local nonarchimedean field with char(F ) �= 2.

Let G be the group of the F -rational points of an F -split connected reductive group of

rank ≥ 2 and G/Z(G) almost F -simple. Let G+ be the the subgroup of G generated by the

unipotent elements of G.

Let Φ be a root system of G with regard to some maximal torus T , and Φ+ the

set of positive roots in Φ. Let S⊂Φ= be a strongly orthogonal system of roots, which, by

definition, means ∀α, β ∈ S ⇒ α ± β �∈ S.

Let K be a good maximal compact subgroup of G, which means that K is a stabi-

lizer of a special vertex in the building of G. Any good maximal compact subgroup gives

rise to a Cartan decomposition G = KΛ+K, where Λ+ is a positive Weyl chamber.
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11540 S. Evra et al.

Then for any unitary representation ρ of G without a nonzero G+-invariant vec-

tors, and for any K-finite unit vectors v and u,

|〈ρ(g)v, u〉| ≤ (dim(Kv) dim(Ku))
1
2 ξS(λ),

where g= k1λk2 ∈ KΛ+K =G, ξS(λ)=∏α∈S ΞPGL2(F )(
α(λ) 0

0 1 ) and ΞPGL2(F ) is the Harish-

chandra Ξ-function of PGL2(F ). �

In our case, G = PGLd(F ) satisfies the assumptions of Theorem 4.9 and G+ is

equal to PSLd(F ) and every vertex is special. The subgroup K is the stabilizer of the

fundamental lattice, hence K is a good maximal compact subgroup. As a maximal torus

T , we take the subgroup of diagonal matrices, and as strongly orthogonal system we take

the singelton S= {α := ad− a1}, α(diag(πa1b1, . . . , π
adbd)) := πad−a1 , where b1, . . . , bd∈O∗.

Using the following formula (see [18, Section 3.8]), for n∈N,

ΞPGL2(F )

(
π±n 0

0 1

)
= q−n/2

(
n(q − 1)+ q + 1

q + 1

)
≤ (n+ 1)q−n/2.

We get the following application of Oh’s theorem, when this time G = PGLd(F ).

Corollary 4.10. Define (ρ, L2(Γ \G)) to be the G-representation given by right transla-

tion ρ(g) f(x)= f(xg). Let f, f ′ ∈ L2(Γ \G) be right K-invariant unit vectors which are

orthogonal to all right G+-invariant vectors. Then for g= π(a1,...,ad),

|〈ρ(g) f, f ′〉| ≤ (ad− a1 + 1)q−
ad−a1

2 .

�

Combining all these estimates together with Corollary 3.7, we can prove the col-

orful mixing lemma.

Proof of the colorful mixing lemma. Let λ̃i = λ̃(Bi) be the normalized second largest

eigenvalue of the bipartite graph Bi. By Corollary 4.8

λ̃i ≤
√

q−1 + ρW(π(−1,0,...,0,1)).

By Corollary 4.10 in the notation of Corollary 4.8 we have

ρW(π(−1,0,...,0,1))≤ 3q−1.

Combining these together, we get that for any type i,

λ̃(Bi)≤ 2

q1/2
.
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Finally, by Corollary 3.7, for any choice of sets Wi ⊂ Vi, i = 1, . . . , d,

discΓ \B(W1, . . . , Wd)≤d ·max
i

λ̃(Bi)≤ 2d

q1/2
,

which proves the claim. �

5 Explicit Construction of Ramanujan Complexes

Ramanujan complexes were introduced in [9, 15, 19] as a generalization of the Ramanu-

jan graphs constructed in [14], and were explicitly constructed in [9, 16, 19]. These com-

plexes are certain quotients of the Bruhat–Tits buildings.

The heart of the construction in [16] is the Cartwright–Steger lattice (CS-lattice)

Λ [2], which allows us to view some of the quotients of the building as Cayley complexes

of finite groups with explicit sets of generators.

The reader is referred to [15, 16] for more details, and to [12] for a reader friendly

survey.

5.1 The Cartwright–Steger lattice

Here we present the CS-lattice, and express explicitly its set of generators.

Let Fq be the finite field of size q, and Fqd the field extension of Fq of degree d. Let

φ be a generator of the Galois group Gal(Fqd/Fq)∼=Z/dZ, and fix a basis ξ0, . . . , ξd−1 of Fqd

over Fq with ξi = φi(ξ0). Denote RT = Fq[y, 1
1+y]. For a given RT -algebra S (i.e., S is given

with a ring homomorphism RT → S), we define a S-algebra A(S)=⊕d−1
i, j=0 Sξizj with the

relations zd= 1+ y and zξi = φ(ξi)z. One can see that the center of A(S) is S, and A(S)∗/S∗

is a group scheme for RT -algebras.

Let k= Fq(y). Then A(k) is a k-central simple algebra. For almost all comple-

tions kν of k, A(kν) splits, that is, A(kν)∼=Md(kν). In fact, this happens for all comple-

tions except for ν 1
y

and ν1+y. In particular, for F = Fq((y))= kνy, the algebra splits and

A(F )∗/F ∗ ∼= PGLd(F ) (see [16, Proposition 3.1]). On the other hand, for ν = ν 1
y

or ν1+y, A(kν)

is a division algebra and A(kν)
∗/k∗ν is compact. Thus Fq[ 1

y, y, 1
1+y] ↪→ kνy × kν 1

y
× kν1+y is dis-

crete and by substituting these rings in A(−)∗/(−)∗ and projecting to the first coordinate

A(F )∗/F ∗ ∼= PGLd(F ) we get a discrete subgroup, which is an arithmetic lattice.

Denote R= Fq[y, 1
y, 1

1+y]. As 1+ y is invertible in RT , z is invertible in A(RT ), since

it divides zd= 1+ y. Denote b= 1− z−1 ∈A(RT ). Since y is invertible in R, so is y
1+y, and

hence b is invertible in A(R), since it divides 1− z−d= y
1+y. For an element u∈ F

∗
qd ⊂A(R),

denote bu=ubu−1 and note that as Fq ⊂ R is in the center of A(R), bu depends only on
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11542 S. Evra et al.

the coset u∈ F
∗
qd/F

∗
q. Define Σ1 = {b̄u |u∈ F

∗
qd/F

∗
q} ⊂A(R)∗/R∗ ⊂A(F )∗/F ∗ ∼= PGLd(F ) where

F = Fq((y)). The Cartwright–Steger lattice is Λ= 〈Σ1〉. This is the promised CS-lattice

which acts simply transitively on the vertices of the building B=Bd(Fq((y))) (see [2] and

[16, Proposition 4.8]).

More explicitly, let x0 = [Od] be the vertex of the building corresponding to the

standard lattice, and let τ :B→Z/dZ be the type function on the building. Then for each

neighboring vertex x of x0 with τ(x)= 1, there exists a unique bu∈Σ1 such that bu · x0 = x.

Now, for i = 2, . . . , d− 1 denote Ni = {x∈ V(B)| x∼ x0 and τ(x)= i}. For every x∈ Ni, there

is a unique γx ∈Λ with γx.x0 = x. Let Σi = {γx|x∈ Ni}, so Σi.x0 = Ni. Let Σ =⋃d−1
i=1 Σi. Then

Σ.x0 is the set of all the neighbors of x0, and we can identify the 1-skeleton of the build-

ing with the Cayley graph Cay(Λ,Σ). Note that as Λ acts simply transitively, |Σi| =
[d

i

]
q

and hence |Σ | =∑d−1
i=1

[d
i

]
q
, where

[d
i

]
q

is the number of i-dimensional subspaces of a d-

dimensional vector space over Fq.

Recall that a clique in a graph is a set of vertices such that each pair of them is

connected by an edge, and the clique complex of a graph is defined to be the collection of

the cliques in the graph. The clique complex of a Cayley graph is called a Cayley complex.

The building B and its quotients with injectivity radius ≥ 2 are clique complexes, hence

completely determined by their 1-skeleton.

We can conclude that if Γ � Λ, the complex Γ \B is the Cayley complex

Cay(Λ/Γ,Σ) of the quotient group Λ/Γ w.r.t. the set of generators Σ . In the next sub-

section we will apply this in the case where Γ is a normal congruence subgroup of Λ.

5.2 Congruence subgroups

Ramanujan complexes are obtained in [16] by dividing the building modulo the action of

congruence subgroups of some arithmetic co-compact lattices, such as Λ above. Here we

define the congruence subgroups of Λ and display their quotients as Cayley complexes

of some finite groups.

For an ideal 0 �= I � R, define the congruence subgroup of Λ to be Λ(I )=Λ ∩
ker(A(R)∗/R∗ →A(R/I )∗/(R/I )∗). This congruence subgroup is a finite index normal sub-

group of Λ. Hence the quotient Λ(I )\B is a finite simplicial complex, which we will

identify with the Cayley complex of the group Λ/Λ(I ) (w.r.t. Σ as the set of generators).

By [16, Theorem 6.2] for any 0 �= I � R, Λ/Λ(I ) is a Ramanujan complex (though, in this

paper, we are not really using this deep fact).

By [16, Theorem 6.6], the group Λ/Λ(I ) can be identified as a subgroup of

PGLd(R/I ) which contains PSLd(R/I ). As R= Fq[y, 1
y, 1

1+y], we consider I = ( f) where

f ∈ Fq[y] is an irreducible polynomial of degree e≥ 2. Then R/I ∼= Fqe and hence
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PSLd(Fqe)≤Λ/Λ( f)≤ PGLd(Fqe). Moreover, by [16, Theorem 7.1], assuming qe > 4d2 + 1

and d|qe − 1, for any subgroup PSLd(Fqe)≤G ≤ PGLd(Fqe), we may find f such that

G =Λ/Λ( f). In particular, G has a set of
∑d−1

i=1

[d
i

]
q

generators such that the correspond-

ing Cayley complex is a Ramanujan complex.

For such quotients of B by congruence subgroups, a bound on the injectivity

radius was presented in [13]

Proposition 5.1 ([13, Proposition 3.3]). Let f ∈ Fq[y] be an irreducible polynomial,

Γ =Λ( f), and X = Γ \B. Denote by |X| the number of vertices of X. Then

dist(Γ ) := min
1 �=γ∈Γ,x∈B

dist(γ.x, x)≥ deg( f)

d
≥ logq |X|

(d− 1)(d2 − 1)
. �

As a consequence of this proposition, we get

Corollary 5.2 (injectivity radius). Let X = Γ \B be a quotient of the building, where Γ as

above. Then the injectivity radius r(X) of X satisfies

r(X)≥
⌊

dist(Γ )− 1

2

⌋
≥ logq |X|

2(d− 1)(d2 − 1)
− 1

2
.

�

5.3 Partite Ramanujan complexes

Before continuing, let us examine the special case of d= 2, that is, the Ramanujan

graphs (compare with [11, 14]). Assume q is an odd prime power. In this case Λ/Λ(I )

is a subgroup of PGL2(Fqe) containing PSL2(Fqe), and since PSL2(Fqe) is of index 2 inside

PGL2(Fqe), Λ/Λ(I ) is either PGL2(Fqe) or PSL2(Fqe). In this case all the elements of Σ =Σ1

either lie outside of PSL2(Fqe) or all are inside of it (which is the case iff the image

of b is in it, in which case all the bu, which are conjugates of b, are also there). The

Cayley graph Cay(Λ/Λ(I ),Σ) is bipartite in the first case and has large chromatic num-

ber in the second. In other words, the quotient Λ/Λ(I ) inherits the type function of the

building (τ :B→Z/2Z) if and only if the index of PSL2(Fqe) inside Λ/Λ(I ) is 2, that is,

Λ/Λ(I )= PGL2(Fqe).

In the high-dimensional case the situation is in analogy with the 1-dimensional

case (see [16, Proposition 6.7, Corollary 6.8]). Assume d|qe − 1 and I = ( f) as before with

R/I = Fqe. Then PGLd(Fqe)/PSLd(Fqe)∼=Z/dZ. If r is the index of PSLd(R/I ) in Λ/Λ(I ) then

r|d, and the image of Λ in Z/dZ under the map τ is d
r Z/dZ∼=Z/rZ. The quotient then

inherits an r-partition from the building, that is, τ : Λ/Λ(I )→Z/rZ. In the construction
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above, the index r = [Λ/Λ(I ) : PSLd(R/I )] is equal to the order of y
1+y inside (R/I )∗/(R/I )∗d

(see [16, Proposition 6.7]).

Lemma 5.3. Let 0 �= I � R and Γ =Λ(I ) as above, r = [Λ/Γ : PSLd(R/I )], and consider the

simplicial complex Γ \B.

(1) Denote Γ0 = Γ ∩ G0 = {g∈ Γ | νF (det(g))≡ 0 mod d} the subgroup of type-

preserving elements of Γ . Then [Γ : Γ0]= d
r .

(2) If r = 1, then Γ0\B→ Γ \B is a d-cover. Moreover, for each vertex in Γ \B, its

preimage is a set of d vertices, one of each type in Z/dZ. �

Proof. Let us look at the type function as a surjective homomorphism of groups

τ = νF ◦ det : Λ∼=B(0)→Z/dZ.

If Λ/Γ is an extension of the simple group PSLd(qe) by a cyclic group of order r, it

follows that by restricting the homomorphism, we get a surjective homomorphism, τΓ :

Γ →Z/d
r Z∼= rZ/dZ. Now, since G0 is the subgroup of type-preserving elements in G,

then ker(τ |X)= X ∩ G0. So by the First Isomorphism Theorem we have

Γ/Γ0 = Γ/ ker(τΓ )∼= τ(Γ )∼=Z/
d

r
Z.

This proves (a). To prove (b) we argue as follows:

Since r = 1 then by (a) we have that [Γ : Γ0]=d. Let γ1, . . . , γd be representa-

tives of Γ0-cosets. Since Γ0 = ker(νF ◦ det |Γ ) all the d types are obtained, then after

renumbering, for each i ∈Z/dZ, νF ◦ det(γi)= i. Also, for any Γ x∈ Γ \B, its preimages

are Γ0γ1x, . . . , Γ0γdx, and their types are 1+ τ(x), . . . , d+ τ(x), which give all d types in

Z/dZ. �

When r = 1, we say that Γ \B is nonpartite. In order to find such Ramanujan

complexes we proceed as follows. Choose some β ∈ F
∗
qe such that βd �= 1 and that α=

βd

1−βd generates the field Fqe. By Lemma 7.2 and the proof of Proposition 7.3 in [16], if

qe≥ 4d2 + 1 there exists such β. Now, let f ∈ Fq[y] be the minimal polynomial of α. Then

f is of degree e, and under the identification R/( f)∼= Fqe, y←→ α = βd

1−βd and y
1+y ←→ βd.

Therefore y
1+y ∈ (R/I )∗d, and by the discussion above Λ/Γ = PSLd(Fqe) and the Cayley

complex of Λ/Γ is nonpartite.

The above may be summarized by the following proposition, which is a special

case of [16, Theorem 7.1] together with Lemma 5.3.
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Proposition 5.4. Let q be a prime power, d≥ 2, e≥ 2 such that qe≥ 4d2 + 1 and d|qe − 1.

Let Λ be the Cartwright–Steger lattice in PGLd(Fq((y))). For an irreducible polynomial

f ∈ Fq[y], let Γ =Λ( f) � Λ be its congruence subgroup, and let Γ0 = Γ ∩ G0 be the finite

index subgroup of type-preserving elements in Γ .

Then there exists an irreducible polynomial f ∈ Fq[y] of degree e, such that

(1) The Cayley complex X =Cay(Λ/Γ,Σ) is a nonpartite Ramanujan complex.

(2) The Cayley complex X̃ =Cay(Λ/Γ0,Σ) is a d-partite Ramanujan complex.

(3) The complex X̃ is a d-cover of X, and the preimage in X̃ of each vertex in X

is a set of d vertices of all d types. �

Remark 5.5. A polynomial f(y) of degree e can be also considered as a polynomial of

degree e in 1
y, by multiplying it by 1

ye , which is an invertible element in R. �

Remark 5.6. For any d≥ 3 and q an odd prime power such that (d, q)= 1, by Fermat–

Euler theorem qϕ(d) − 1= 0 mod d. Hence, there exist infinitely many integers e such that

qe≥ 4d2 + 1 and d|qe − 1. �

6 Proof of the Main Theorem

We are now ready to prove the following theorem which implies Theorem 1.2.

Theorem 6.1. Let d≥ 3 and q an odd prime power such that (d, q)= 1, and let X be a

nonpartite Ramanujan complex as constructed in Proposition 5.4. Let χ(X) and r(X) be

the chromatic number and injectivity radius of X (as defined in the introduction). Then

r(X)≥ logq |X|
2(d− 1)(d2 − 1)

− 1

2

and, assuming r(X)≥ 2,

χ(X)≥ 1
2 · q1/2d.

�

Proof. The claim about the injectivity radius is Corollary 5.2. For the chromatic num-

ber: Consider a coloring of X with χ(X) colors, and let W be the set of vertices of X of

the most common color, so |W| ≥ |V(X)|
χ(X)

. Let X̃ be the d-cover of X with the type-function

inherited from building, as in Proposition 5.4. For each i ∈Z/dZ, let Wi be the preimage

of W of vertices of type i in X̃, so |Wi| = |W|.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2015/22/11520/2357193 by H
arm

an Science Library, H
ebrew

 U
niversity of Jerusalem

 user on 20 Septem
ber 2022



11546 S. Evra et al.

Note that the image of each j-dimensional simplex ẽ in X̃ is again an

j-dimensional simplex e in X. Indeed, as the injectivity radius is ≥ 2 and each simplex

is a clique, so any two vertices in ẽ are of distance 1, hence are not mapped to the same

vertex in X.

In particular, each d-dimensional simplex in X̃, with one vertex in each Wi, is

mapped to a d-dimensional simplex in X, with all the vertices in W. But by the definition

of the chromatic number there are no such simplices in X with all vertices in W, and

therefore E(W1, . . . , Wd)=∅.

Denote by Vi the set of vertices of type i in X̃, then |Vi| = |V(X)| for all i = 1, . . . , d.

Therefore |Wi |
|Vi | =

|W|
|V(X)| ≥ 1

χ(X)
. Since E(W1, . . . , Wd)=∅, we get

discX̃(W1, . . . , Wd)=
d∏

i=1

|Wi|
|Vi| ≥

1

χ(X)d
.

On the other hand, by the Colorful Mixing Lemma, we have

discX̃(W1, . . . , Wd)≤ 2d

q1/2
.

Combining these together we get

χ(X)≥ (2d)−
1
d · q 1

2d ≥ 1

2
· q 1

2d . �

Remark 6.2. The complexes in Theorem 6.1 are nonpartite. It follows therefore that for

their 1-skeletons, the largest eigenvalue of their adjacency matrices is k≈ qd2/4 where

the second one λ2 is at most ddqd2/8 (see [12, remark 2.1.5]). It follows from [3, Theorem 1]

that diam(X)≤ log |X|
log(λ1/λ2)

, so

diam(Xn)≤
logq |Xn|

logq

(
k

ddqd2/8

) ≈ logq |Xn|
d2/4− dlogq d

≈ 4 logq |Xn|
d2

≤ 8d · r(Xn)

for q�d. So, up to a constant fraction of their diameters, these complexes are two col-

orable around every vertex. �

Remark 6.3. Theorems 6.1 and 1.2 are true also if either q is even or d= 2, but not

simultaneously. In this case one should use the full power of the Ramanujan bounds.

For the cases, we treated here, Oh’s theorem suffices.

Note, however, that we crucially use the explicit construction of [16] where it is

shown that nonpartite Ramanujan complexes do exist. This fact, in turn, depends on

the work [2] of Cartwright–Steger which gives lattices acting simply transitively on the
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vertices of the building. The lower bound on χ(X) given in Theorem 6.1 holds for every

nonpartite quotient X of Bd(F ). �
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